ARUS LISTRIK
Dalam konduktor logam terdapat elektron-elektron yang bebas dan mudah untuk bergerak sedangkan pada konduktor elektrolit, muatan bebasnya berupa ion-ion positif dan negatif yang juga mudah bergerak.
Bila dalam konduktor ada medan listrik; maka muatan muatan tersebut bergerak dan gerakan dari muatan-muatan ini yang dinamakan arus listrik.
Arah arus listrik siperjanjikan searah dengan gerakan muatan-muatan positif.
Bila medan yang menyebabkan gerakan-gerakan muatan tersebut arahnya tetap; akan dihasilkan arus bolak-balik secara harmonik, hasilkan arus bolak-balik (AC- Alternating Current).
* KUAT ARUS.
Kuat arus ( i ) di definisikan sebagai :
Jumlah muatan yang mengalir melalui suatu penampang persatuan waktu.
Karena arah arus adalah searah dengan arah muatan positif, maka jumlah muatan yang lewat adalah jumlah muatan positif.
dq = jumlah muatan (Coulomb)
dt = selisih waktu (detik)
i = kuat arus
Satuan dari kuat arus adalah Coulomb/detik yang tidak lain adalah : Ampere.
Ditinjau dari dari suatu konduktor dengan luas penampang A dalam suatu interval dt; maka jumlah muatan yang lewat penampang tersebut adalah jumlah muatan yang terdapat dalam suatu silinder dengan luas penampang A, yang panjangnya V dt.
Bila n adalah partikel persatuan volume dan e muatan tiap partikel.
dq = n.e.V.A.dt
sehingga diperoleh besarnya :
Ampere
Rapat arus J didefinisikan sebagai kuat arus persatuan luas.
Ampere/m2
* HUKUM OHM
Hubungan antara tegangan, kuat arus dan hambatan dari suatu konduktor dapat diterangkan berdasarkan hukum OHM.
Dalam suatu rantai aliran listrik, kuat arus berbanding lurus dengan beda potensial antara kedua ujung-ujungnya dan berbanding terbalik dengan besarnya hambatan kawat konduktor tersebut.
Hambatan kawat konduktor biasanya dituliskan sebagai “R”.
I = kuat arus
VA - VB = beda potensial titik A dan titik B
R = hambatan
Besarnya hambatan dari suatu konduktor dinyatakan dalam
R = r
R = hambatan | satuan = ohm |
L = panjang konduktor | satuan = meter |
A = luas penampang | satuan = m2 |
r = hambat jenis atau resistivitas | satuan = ohm meter |
Dari hubungan diatas dapat disimpulkan bahwa :
1. Hambatan berbanding lurus dengan panjang konduktor.
2. Hambatan berbanding terbalik dengan luas penampang konduktor.
3. Hambatan berbanding lurus dengan resistivitas atau hambat jenis dari konduktor tersebut.
Harga dari hambat jenis/resistivitas anatara nol sampai tak terhingga.
r = 0 disebut sebagai penghantar sempurna (konduktor ideal).
r = ~ disebut penghantar jelek (isolator ideal).
Hambatan suatu konduktor selain tergantung pada karakteristik dan geometrik benda juga tergantung pada temperatur. Sebenarnya lebih tepat dikatakan harga resistivitas suatu konduktor adalah tergantung pada temperatur.
Grafik hambat jenis lawan temperatur untuk suatu konduktor memenuhi hubungan :
r(t) = r0 + at + bt 2 + ...
r(t) = hambat jenis pada suhu t 0 C
r0 = hambat jenis pada suhu 0 0 C
a, b = konstanta.
Untuk suhu yang tidak terlampau tinggi, maka suhu t 2 dan pangkat yang lebih tinggi dapat diabaikan sehingga diperoleh :
a = koef suhu hambat jenis
Karena hambatan berbanding lurus dengan hambat jenis, maka diperoleh :
R(t) = R0 ( 1 + a.t )
* SUSUNAN HAMBATAN (TAHANAN)
Beberapa tahanan dapat disusun secara :
· Seri
· Paralel
· Kombinasi seri dan paralel
SUSUNAN SERI
Bila tahanan-tahanan : R1, R2, R3, ...
disusun secara seri, maka :
Kuat arus (I) yang lewat masing-masing tahanan sama besar :
¾® i = i1 = i2 = i3 = ....
¾® VS = Vad = Vab + Vbc + Vcd + ...
¾® RS = R1 + R2 + R3 + ...
SUSUNAN PARALEL
Bila disusun secar paralel, maka :
¾® Beda potensial pada masing-masing ujung tahanan besar ( VA = VB ).
¾® i + i1 + i2 + i3 + ....
¾®
ALAT UKUR KUAT ARUS, BEDA TEGANGAN DAN TAHANAN
* Jembatan wheatstone
Dipakai untuk mengukur besar tahanan suatu penghantar.
Jembatan wheatstone terdiri dari empat tahanan disusun segi empat dan Galvanometer.
· R1 dan R2 biasanya diketahui besarnya.
· R3 tahanan yang dapat diatur besarnya sehingga tidak ada arus yang mengalir lewat rangkaian B-C-G (Galvanometer).
· RX tahanan yang akan diukur besarnya.
Bila arus yang lewt G = 0, maka :
RX . R2 = R1 . R3
* AMPEREMETER/GALVANOMETER.
Alat ini :
· Dipakai untuk mengukur kuat arus.
· Mempunyai hambatan yang sangat kecil.
· Dipasang seri dengan alat yang akan diukur.
Untuk mengukur kuat arus yang sangat besar (melebihi batas ukurnya) dipasang tahanan SHUNT paralel dengan Amperemeter (alat Amperemeter dengan tahanan Shunt disebut AMMETER)
Sebuah Amperemeter yang mempunyai batas ukur maksimum I Ampere dan tahanan dalam Rd Ohm, supaya dapat dipakai untuk mengukur arus yang kuat arusnya n x i Ampere harus dipasang Shunt sebesar :
Ohm
* VOLTMETER.
Alat ini :
· Dipakai untuk mengukur beda potensial.
· Mempunyai tahanan dalam yang sangat besar.
· Dipasang paralel dengan alat (kawat) yang hendak diukur potensialnya.
Untuk mengukur beda potensial yang melebihi batas ukurnya, dipasang tahanan depan seri dengan Voltmeter.
Untuk mengukur beda potensial n x batas ukur maksimumnya, harus dipasang tahanan depan (RV):
Rv = ( n - 1 ) Rd Ohm
ENERGI LISTRIK (HUKUM JOULE)
Karena gerakan muatan-muatan bebas yang menumbuk partikel yang tetap dalam penghantar, maka terjadi perpindahan energi kinetik menjadi energi kalor, sehingga penghantar menjadi panas.
Hubungan antara gerakan muatan yang disebabkan oleh kuat medan dengan panas yang ditimbulkan, berdasarkan JOULE :
1. Tahanan kawat penghantar.
2. Pangkat dua kuat arus dalam kawat penghantar.
3. Waktu selama arus mengalir.
W = i 2 . r . t = V . i . t Joule
Dengan :
W = Jumlah Kalor (Joule).
i = Kuat arus yang mengalir (Ampere).
r = Tahanan kawat penghantar (Ohm).
t = Waktu (detik).
V = Beda potensial antara dua titik A dan B (Volt).
Karena : 1 kalori = 4,2 Joule dan 1 Joule = 0,24 Kalori
W = 0,24 i 2 . r . t = 0,24 V . i . t Kalori
DAYA (EFEK ARUS LISTRIK)
Daya adalah banyaknya usaha listrik (energi listrik) yang dapat dihasilkan tiap detik.
DAYA joule/detik
atau (Volt -Ampere = Watt)
RANGKAIAN ARUS SEARAH
Arus searah dapat diperoleh dari bermacam-macam sumber, antara lain :
1. Elemen Elektronika.
2. Thermo elemen.
3. Generator arus searah.
* Elemen Elektrokimia
Adalah elemen yang dapat menghasilkan energi listrik dari energi kimia selama reaksi kimia berlangsung. Elemen ini terdiri dari elektroda-elektroda positif (ANODA), elektroda negatif (KATODA) dan elektrolit.
Mcam-macam elemen elektrokimia.
a) Elemen PRIMER : elemen ini membutuhkan pergantian bahan pereaksi setelah sejumlah energi dibebaskan melalui rangkaian luar misalnya : Baterai.
Pada elemen ini sering terjadi peristiwa polarisasi yaitu tertutupnya elektroda-elektroda sebuah elemen karena hasil reaksi kimia yang mengendap pada elektroda-elektroda tersebut.
Untuk menghilangkan proses polarisasi itu ditambahkan suatu zat depolarisator.
Berdasarkan ada/tidaknya depolarisator, dibedakan dua macam elemen primer :
1. Elemen yang tidak tetap; elemen yang tidak mempunyai depolarisator, misalnya pada elemen Volta.
2. Elemen tetap; elemen yang mempunyai depolarisator.
misalnya : pada elemen Daniel, Leclanche, Weston, dll.
b) Elemen SEKUNDER : Elemen ini dapat memperbaharui bahan pereaksinya setelah dialiri arus dari sumber lain, yang arahnya berlawanan dengan arus yang dihasilkan, misalnya : Accu.
Misalkan : Akumulator timbal asam sulfat. Pada elemen ini sebagai Katoda adalah Pb; sedangkan sebagai Anode dipakai PbO2 dengan memakai elektrolit H2SO4.
- Banyaknya muatan yang dapat disimpan dalam akumulator dinyatakan dalam tenaga akumulator (kapasitas akumulator) yaitu : Jumlah maksimum muatan listrik yang dapat disimpan dalam akumulator.
Biasanya dinyatakan dalam :
Ampere - jam (Ah = Ampere hour)
1 Ah = 3600 Coulomb.
- Daya guna akumulator.
Tidak semua energi listrik yang dikeluarkan oleh akumulator dapat dipergunakan, sehingga dikenal istilah daya guna efisiensi rendeman = h, yaitu :
b) Elemen BAHAN BAKAR : adalah elemen elektrokimia yang dapat mengubah energi kimia bahan bakar yang diberikan secar kontinue menjadi energi listrik.
Misalkan : pada elemen Hidrogen-Oksigen yang dipakai pada penerbangan angkasa.
* Thermo Elemen
Adalah elemen yang dapat menghasilkan energi listrik dari kalor dengan cara pemanasan pada pasangan-pasangan logam tertentu. Dasar dari thermoelemen ini adalah penemuan dari :
- Seebeck : yaitu mengenai terjadinya arus listrik karena perbedaan suhu pada logam.
- Peltier : yang menemukan bahwa pada suhu yang sama, logam yang berlainan
mempunyai kelincahan elektron bebas yang berbeda.
* Generator Arus Searah
Generator adalah alat untuk menghasilkan listrik dari energi mekanik.
GAYA GERAK LISTRIK DAN
PERSAMAAN RANGKAIAN ARUS SEARAH
* GAYA GERAK LISTRIK
Dalam rangkaian arah listrik terdapat perubahan energi listrik menjadi energi listrik menjadi energi dalam bentuk lain, (misal : panas, mekanik, kimia ... dan lain lain).
Perubahan tersebut dapat merupakan :
- Perubahan yang tidak dapat balik (irreversible).
Misalkan : pada perubahan energi listrik menjadi energi kalor pada penghantar yang dilalui arus listrik.
- Perubahan yang dapat balik (reversible)
Misalkan : pada perubahan energi listrik menjadi energi mekanik/kimia pada elemen atau generator.
Alat yang dapat menyebabkan secara reversible (dapat balik) disebut sumber gaya gerak listrik (GGL) atau sumber arus.
- Gaya gerak listrik (GGL) adalah besarnya energi listrik yang berubah menjadi energi bukan listrik atau sebaliknya, jika satu satuan muatan melalui sumber itu, atau kerja yang dilakukan sumber arus persatuan muatan.
e = ( Joule/Coulomb = Volt )
GGL bukan merupakan besaran vektor, tetapi GGL diberi arah dan di dalam sumber arus, arahnya dari kutub negatif ke kutub positif.
* PERSAMAAN RANGKAIAN ARUS SEARAH
Elemen yang mempunyai sumber arus Volt dan tahanan dalam (r) ditutup oleh kawat yang mempunyai tahanan luar R, akan menghasilkan kuat arus yang besarnya :
Bila beberapa elemen (n buah elemen) yang masing-masing mempunyai GGL e Volt disusun secara seri, kuat arus yang timbul :
Bila beberapa elemen (m buah elemen) yang masing-masing mempunyai GGL, Volt dan tahanan dalam r disusun secara paralel, kuat arus yang timbul :
- Bila beberapa elemen (n buah elemen) yang masing-masing mempunyai GGL, Volt dan tahanan dalam r disusun secara seri, sedangkan berapa elemen (m buah elemen) yang terjadi karena hubungan seri tadi dihubungkan paralel lagi, maka kuat arus yang timbul :
TEGANGAN JEPIT
adalah beda potensial kutub-kutub sumber arus bila sumber itu dalam rangkaian tertutup. Jadi tegangan jepit sama dengan selisih potensial antara kedua ujung kawat penghubung yang dilekatkan pada kutub-kutub dengan jepitan.
Tegangan jepit ( K ) = i . R
8 HUKUM KIRCHHOFF
1. Hukum Kirchhoff I ( Hukum titik cabang )
a. Kuat arus dalam kawat yang tidak bercabang dimana-mana sama besaranya.
b. Pada kawat yang bercabang, jumlah dari kuat arus dalam masing-masing cabang dengan kuat arus induk dalam kawat yang tidak bercabang.
Ã¥ i = 0
c. Jumlah arus yang menuju suatu titik cabang sama dengan jumlah arus yang meninggalkannya.
Bila P adalah cabangnya, maka :
I masuk = I keluar
i1 + i2 + i3 = i4 + i5
2. Hukum Kirchoff II ( Hukum rangkaian tertutup itu )
Jumlah aljabar gaya gerak listrik ( GGL ) dalam satu rangkaian tertutup ( LOOP ) sama dengan jumlah aljabar hasil kali i x R dalam rangkaian tertutup itu.
e = i.R
Untuk menuliskan persamaan diatas, perlu diperhatikan tanda dari pada GGL, yaitu sebagai berikut :
: positif
: negatif
Dimana : arah i adalah arah acuan dalam loop itu Sebagai contoh daripada pemakaian Hukum Kirchoff misalnya dari rangkaian listrik di bawah ini :
Misalkan hendak menghitung besarnya arus yang mengalir pada masing-masing tahanan.
cara *
- Tentukan masing-masing arus yang mengalir pada R1, R2, R3, R4, R5 dan Rd adalah i1, i2, i3, i4, i5 dan I
- Arah referensi pada masing-masing I loop adalah : arah searah dengan jarum jam.
Hukum kirchoff II.
Pada lopp I : i1 R1 + I3 R3 - I2 R2 = 0.....................( 1 )
Pada loop II : i4 R4 - i3 R3 - i5 R5 = 0.....................( 2 )
Pada loop III ; i2 R2 + i5 R5 + i.rd = e....................( 3 )
Hukum Kirchoff I .
Pada titik A : I = I1 + i2...........................................( 4 )
Pada titik D : I4 + I5 = i...........................................( 5 )
Pada titik C : I2 + I3 = i5......................................( 6 )
Dengan 6 buah persamaan di atas, dapat dihitung i1 ; i2 ; i3 ; i4 ; i5 dan i .
* ELEKTROLISA.
Elektrolisa adalah peristiwa terurainya larutan elektrolit ( larutan asam, basa dan garam ) karena adanya arus listrik, larutan elektrolit adalah suatu penghantar listrik; karena didalamnya terdapat muatan-muatan bebas yang berupa ion-ion positif dan negatif yang mudah sekali bergerak bila dikenai medan listrik. Mudah terurainya zat elektrolit di dalam larutan, adalah karena didalam larutan gaya tarik-menarik ( gaya coulomb ) antara ion positif dan negatif menjadi sangat berkurang ( = permitivitas air jauh lebih kecil daripada udara ).
Pada elektrolisa larutan AgNO3, ion Ag+ yang telah terurai dari molekul AgNO3 akan bergerak ke kutub negatif ( katode = K ) dan di sini akan memperoleh satu elektron sehingga atom Ag yang netral, dan demikian juga ion ( NO3 )- akan pergi kekutub positif ( Anoda = A ) yang akan memberikan elektronnya sehingga menjadi gugusan sisa asam yang netral. Banyaknya zat yang diendapkan pada peristiwa elektrolisa telah dapat dihitung oleh FARADAY.
* FARADAY
1. HUKUM FARADAY I.
“Massa zat yang diendapkan selama proses elektrolisa sebanding dengan jumlah muatan listrik yang melalui larutan itu”
m = z . q
atau
m = z . I . t
m = massa zat yang diendapkan.
q = I . t = jumlah muatan listrtik yang melalui larutan.
z = tara Kimia listrik zat, yaitu massa zat yang dipisahkan oleh muatan 1 coulomb selama proses elektrolisa satuan kg/coulomb.
2. HUKUM FARADAY II.
“ Massa sebagai zat yang dipisahkan oleh suatu arus listrik pada proses elektrolisa berbanding lurus dengan tara kimia listrik masing-masing “ .
Misalkan zat A dan B bersama-sama dipisahkan oleh suatu arus listrik yang besarnya sama dan dalam waktu yang sama pula, maka :
mA : mB = zA ; zB
BA = berat atom ; v = valensi atom
BA/v = berat ekivalen
zA : zB =
Pelaksanaan praktis pada peristiwa elektolisa ialah pada voltmeter yang dapat digunakan untuk :
1. Mengukur kuat arus ( I ) dengan jalan elektrolisa suatu larutan garam.
2. Menentukan tara kimia listrik zat.
3. Menentukan muatan listrik terkecil ( muatan elemeter )
4. Memperoleh logam murni dari garam-garam atau Hidroksida logam tersebut.
5. Menyepuh.
Macam-macam voltmeter yang sering dipergunakan adalah : Voltmeter perak, voltmeter tembaga, voltmeter Hoffman ( voltmeter gas H2 )
LATIHAN SOAL
1. Arus sebesar 5 Amper mengalir dalam penghantar metal, berapa coulomb besar muatan q yang berpindah selama 1 menit.
2. Berapa besar kuat arus listrik yang memindahkan muatan 30 coulomb melalui sebuah penghantar tiap menit.
3. Kuat arus sebesar 8 ampere mengalir melalui penghantar. Berapa jumlah elektron yang bergerak melalui penghantar tersebut tiap menit, jika muatan 1 elektron = 1,6 . 10-19 C.
4. Di dalam penghantar kawat yang penampangnya 1 mm2 terdapat 3.1021 elektron bebas per m3 . Berapa kecepatan elektron-elektron tersebut, jika dialiri listrik dengan kuat arus 12 ampere. Berapa kuat arusnya ?
5. Metode ampermeter-voltmeter dipasang sedemikian rupa untuk maksud mengetahui besar hambatan R. Ampermeter A dipasang seri terhadap R dan menunjukkan 0,3 A. Voltmeter V dipasang pararel terhadap R dan menunjukkan tegangan sebesar 1,5 volt. Hitung besar hambatan R.
6. Sebatang aluminium panjangnya 2,5 m, berpenampang = 5 cm2. Hambatan jenis aluminium = 2,63.10-8 ohm.meter. Jika hambatan yang ditimbulkan oleh aluminium sama dengan hambatan yang ditimbulkan oleh sepotong kawat besi yang berdiameter 15 mm dan hambatan jenisnya = 10.10-7 ohm.meter, maka berapakah panjang kawat besi tersebut ?
7. Sepotong penghantar yang panjangnya 10 meter berpenampang 0,5 mm2 mempunyai hambatan 50 ohm. Hitung hambatan jenisnya.
8. Hambatan kawat pijar pada suhu 0 0C adalah 6 ohm. Berapa hambatannya pada suhu 10000 c, jika koefesien suhu = 0,004.
9. Hitung hambatan pengganti untuk :
a. Rangkaian pararel dari hambatan 0,6 ohm dan 0,2 ohm
b. Rangkaian pararel dari 3 buah DC solonoide yang masing-masing.
10. Hambatan berapa ohm harus dihubungkan pararel dengan hambatan 12 ohm agar mengahasilkan hambatan pengganti sebesar 4 ohm.
11. Berapa banyak hambatan 40 ohm harus dipasang pararel agar menghasilkan arus sebesar 15 amper pada tegangan 120 volt.
12. Baterai 24 volt dengan hambatan dalam 0,7 ohm dihubungkan dengan rangkaian 3 kumparan secara pararel, masing-masing dengan hambatan 15 ohm dan kemudian diserikan dengan hambatan 0,3 ohm. Tentukan :
a. Buatlah sketsa rangkaiannya.
b. Besar arus dalam rangkaian seluruhnya.
c. Beda potensial pada rangkaian kumparan dan antara hambatan 0,3 ohm.
d. Tegangan baterai pada rangkaian.
13. Hambatan yang disusun seperti pada gambar dibawah ini, dipasang tegangan 30 volt. Tentukanlah :
a. Hambatan penggantinya.
b. Arus pada rangkaian.
14. Pada suhu 00 C resistor-resistor tembaga, karbon dan wolfram masing-masing mempunyai hambatan 100 ohm. Kemudian suhu resistor serentak dinaikkan menjadi 1000 C. Jika cu = 0,00393 / 0C, c = 0,005 / 0C, wo = 0,0045 / 0C. Maka tentukan hambatan penggantinya jika :
a. Resistor-resistor tersebut disusun seri.
b. Resistor-resistor tersebut disusun pararel.
15. Suatu sumber listrik terdiri dari 120 elemen yang disusun gabungan. Masing-masing elemen mempunyai GGL = 4,125 volt dan hambatan dalam 0,5 ohm. Kutub-kutubnya dihubungkan dengan sebuah hambatan 30 ohm, sehingga kuat arus yang dihasilkan adalah 2 amper. Bagaimana susunan elemen ?
16. Ditentukan dua elemen masing-masing dengan GGL 20 volt dan 12 volt dan hambatan dalamnya 1,5 ohm dan 0,5 ohm di rangkai dengan hambatan 18 ohm seperti pada denah di bawah ini. Tentukanlah :
a. Tegangan jepit antara P dan N
b. Tegangan jepit antara A dan B
17. Dua baterai mempunyai potensial masing-masing 25 volt dan 10 volt. Hambatan dalam masing-masing baterai adalah 0,4 ohm dan 1 ohm, kedua baterai tersebut dihubungkan seri dengan hambatan R = 2,5 ohm, seperti terlihat pada gambar dibawah ini. Tentukanlah :
a. Arus I pada rangkaian.
b. Misalkan potensial di a = 0, cari potensial relatif di b dan c.
c. Hitung beda potensial antara titik-titik a dan b , b dan c, c dan a.
18. Dua baterai dengan Emf 20 volt dan 8 volt dan hambatan dalamnya 0,5 ohm dan 0,2 ohm dihubungkan seri dengan hambatan R = 5,3 ohm ( lihat gambar ! )
a. Hitung arus pada rangkaian tersebut.
b. Misalkan potensial di a = 0 hitung potensial relatif di titik-titik b dan c.
c. Berapa beda potensial Vab’, Vbc’dan Vca’ ?
19. Dua buah hambatan dari 12 ohm dan 5 ohm dihubungkan seri terhadap baterai 18 volt yang hambatan dalamnya = 1 ohm. Hitunglah :
a. Arus rangkaian.
b. Beda potensial antara kedua hambatan tersebut.
c. Beda potensial pada kutub baterai.
20. Hitung usaha dan daya rata-rata yang diperlukan untuk memindahkan muatan 96.000 coulomb dalam waktu 1 jam pada beda potensial 50 volt.
21. Kuat arus yang sebenarnya 5 ampere mengalir dalam konduktor yang mempunyai hambatan 20 ohm dalam waktu 1 menit. Tentukanlah :
a. Besar energi listrknya.
b. Besar daya listriknya.
22. Sebuah tungku listrik yang mempunyai daya 300 watt hanya dapat dipasang pada beda tegangan 120 volt. Berapa waktu yang diperlukan untuk mendidihkan 500 gram air dari 28 0C sampai pada titik didih normalnya. Kalor jenis air = 1 kalori per gram 0C.
23. Kawat penghantar dengan hambatan total 0,2 ohm menyalurkan daya 10 Kw pada tegangan 250 volt, menuju pada sebuah pabrik mini. Berapa efisiensi dari transmisi tersebut.
24. Sebuah Voltmeter yang mempunyai hambatan 1000 ohm dipergunakan untuk mengukur potensial sampai 120 volt. Jika daya ukur voltmeter = 6 volt, berapa besar hambatan multiplier agar pengukuran dapat dilakukan?
25. Sebuah galvanometer dengan hambatan 5 ohm dilengkapi shunt agar dapat digunakan untuk mengukur kuat arus sebesar 50 ampere. Pada 100 millivolt jarum menunjukkan skala maksimum. Berapa besar hambatan shunt tersebut.
26. Dalam larutan perak nitrat dialirkan arus 4 amper. Jika tara kimia listrik Ag = 1,12 mg/c, berapa mg perak yang dipisahkan dari larutan selama dialiri arus 50 detik.
27. Arus listrik 10 ampere dialirkan melalui larutan CuSO4. Berapa lama diperlukan untuk memperoleh 50 gram tembaga murni. massa atom Cu = 63,5 Cu bervalensi 2.
28. Arus tetap sebesar 5 ampere mengendapkan seng pada katoda yang massanya 3,048 gram pada aliran arus selam 30 menit. Tentukan massa atom seng bila valensi seng = 2.
29. Hitunglah hambatan pengganti dari rangkaian di bawah ini.
30. Dari rangkaian di bawah ini, maka tentukan arus yang dihasilkan Baterai.
31. Hitunglah arus yang dihasilkan baterai pada rangkaian yang dibawah ini.
32. Tentukan arus yang dihasilkan baterai pada rangkaian di bawah ini.
33. Tahanan PA = BN = R.
a. Hitung arus yang melalui cabang ADB dan ACB.
b. Hitung beda potensial antara A dan B
c. Hitung berapakah tahanan PA.
34. Hitunglah Vab
35. Untuk rangkaian di bawah ini jika S1 dan S2 ditutup, maka voltmeter ( V ) akan menunjukkan harga............
36. Dua batang kawat terbuat dari perak dan platina dihubungkan secara seri. Kawat perak panjangnya 2 meter, penampangnya 0,5 mm2, hambatan jenisnya 1,6.10-8 ohm meter. Sedangkan kawat platina panjang 0,48 m. Penampangnya 0,1 mm2 dan hambatan jenisnya 4.10-8ohm meter. Hitung berapa kalori panas yang timbul pada kawat platina, jika ujung-ujung rangkaian tersebut diberi tegangan 12 volt selama 1 menit.
37. Jika di ketahui : r1 = 0,5 ohm ; R1 = 1,5 ohm ; r2 = 1 ohm ; R2 = 2 ohm ; E1 = 2 V ; E2 = 1 V ; E3 = 1,5 V ; E4 = 2,5 V ; R5 = 2 ohm ; r3 = 0,5 ohm ; R3 = 1 ohm ; r4 = 1 ohm R4 = 2 ohm. Hitunglah I1, I2 dan I3.
38. Pada gambar di samping. Hitunglah besar tentukan arah dari I1, I2 dan I3 ?
39. Sebuah bujursangkar ABCD dibuat dari kawat yang berbeda-beda, tahanan AB = 2 ohm, tahanan BC = 7 ohm, tahanan CD = 1 ohm. Tahanan DA = 10 ohm sedangkan diagonal BD dihubungkan dengan tahanan dari 2 ohm. Titik A dihubungkan dengan Kutub + dari elemen baterai yang tahanan dalamnya 1 ohm sedangkan titik C dihubungkan dengan kutub - dari elemen tersebut. Kuat arus induk dari kutub + elemen yang masuk ke titik A adalah 1 Ampere.
a. Berapa besar dan arah arus yang melalui diagonal BD.
b. Berapa besar dan arah arus yang lain pada setiap cabang.
c. Berapakah GGL elemen tersebut.
40. Titik p, A, dan N terletak pada satu garis lurus. Tahanan PA = tahanan BN. Beda potensial antara titik P dan N = 12 V. Antara A dan B terdapat 2 cabang yaitu ADB dan ACB kuat arus yang melalui PA = 5 ampere. Tahanan AD = 1 ohm tahanan DB = 2 ohm, tahanan CB = 3 ohm. Sedangkan antara A dan C terdapat sebuah elemen kutub + dihubungkan titik A, Kutub - dengan titik C. GGL elemen 2 V. Tahanan dalamnya 0,5 ohm.
a. Berapakah kuat arus dalam masing-masing cabang.
b. Berapakah beda potensial antara titik A dan B.
c. Berapakah tahanan PA.
Tidak ada komentar:
Posting Komentar